1 引言
隨著信息技術的迅速發展和計算機的日益普及,對電源系統供電質量和可靠性的要求越來越高,不間斷電源(UPS)的應用也越來越廣泛。在運行時,要求UPS的輸出電壓、頻率和相位都與市電保持一致,這樣才能在市電發生變化時保證UPS向負載提供不間斷、穩定的電能,且不對負載產生過大的沖擊。所以,UPS中的逆變器須有鎖相環節,以保證UPS與市電的同步。同步鎖相控制應具備下述功能:
①當電網頻率滿足精度要求時,使逆變器與電網同步運行;
②當電網頻率超出精度要求范圍或電網發生故障時,使逆變器與內部高精度的基準頻率同步運行。此外,兩種狀態之間的轉換要平穩,以免造成轉換過程中逆變器工作頻率的劇烈抖動。
鎖相可分為模擬鎖相和數字鎖相。與傳統的模擬鎖相相比,數字鎖相不僅能簡化硬件電路的設計,降低成本,還可解決模擬電路中需要調整電路參數,以及器件的老化和溫漂等問題,大大提高了電路的可靠性和鎖相精度。在此,討論了逆變器的輸出電壓數字鎖相技術[1,2]。
2 數字鎖相環
2.1 鎖相原理
鎖相環是一個閉環的相位控制系統,能夠自動跟蹤輸入信號的頻率和相位。圖1示出普通的模擬鎖相環控制框圖。它由鑒相器(PD)、低通濾波器 (LPF)和壓控振蕩器(VCO)組成。通過將VCO的輸出電壓信號uout(t)和電網電壓的采樣信號uin(t)這兩路頻率與相位不同的信號送入鑒相器,生成誤差信號Ue(t),該信號是相位差的線性函數。ue(t)經過低通濾波器后輸出電壓信號UD(t)。VCO在uc(t)的控制下將改變uout(t)的頻率和相位,以減小uout(t)的頻率和相位差。
在UPS的數字化控制中,傳統的模擬鎖相環改變為用軟件實現的數字鎖相環。旁路電壓ub和逆變器的輸出電壓uoi分別經過過零檢測電路轉換為方波信號,單片機的捕獲單元在捕獲到方波信號每個上升沿到來時,讀取定時器的計數值。圖2示出電壓捕獲示意圖。
旁路電壓ub和逆變器的輸出電壓uoi這兩個捕獲單元共用一個定時器的計數器,計數器溢出時自動清零。用每一次的旁路電壓上升沿時刻減去之前的輸出電壓上升沿時刻即為uoi與ub的相位差。圖3示出數字鎖相的實現。
2.2 數字鎖相方法
對采用SPWM 控制的逆變器,可固定載波比N(N=fc/f1),通過改變三角載波周期Tc,即頻率fc,可改變輸出的交流電壓基波頻率f1。這里正是采用這種方法來調節逆變器的輸出電壓和輸出頻率,從而相應地調節相位,以完成逆變器輸出頻率的相位跟蹤市電的鎖相過程。在圖3中,若Td ,則uoi的相位超前ub,需要增大逆變器的輸出載波周期T1PR值;反之若Td>T/2,則uoi的相位滯后ub,需要減小逆變器的輸出載波周期T1PR值,直至Td在允許范圍內,即實現了鎖相。
為了實現對電網電壓、頻率和相位的跟蹤,可利用一個比較器進行過零檢測,以提高抗干擾能力及保證檢測的快速性,工程上所用的比較器一般為滯環比較器。圖4示出過零檢測滯環比較器電路及其輸出波形。
為了實現鎖相,程序中采用了一個單增模式計數器,計數溢出后自動清零,由單片機的定時器TA來充當。同時設定兩個寄存器ophs和kx。當逆變器的輸出電壓上升沿發生觸發中斷時,將捕獲通道的計數值賦給ophs;同理,當ub中斷時,將捕獲通道的計數值賦給kx,兩值相減即為相位差。
2.3 數字鎖相環路傳函
在數字鎖相控制中,圖1的環路濾波器用比例積分環節替代,壓控振蕩器變成數控振蕩器,并通過相位累加器予以實現。改變uoi的相位,以跟蹤輸入電壓的相位是非常困難的,因此在實際中一般通過改變逆變器的 頻率來達到跟蹤輸入電壓相位的目的。這里也正是采用這種方法來鎖相的,所以逆變器可等效為純積分環節。
為了保證穩態時逆變器跟蹤電網相位的誤差為零,環路濾波器采用分段式變PI調節器。
根據離散系統奈奎斯特判據,環路穩定的充分必要條件是閉環傳遞函數特征方程的特征根全部位于z平面的單位圓內,解得環路的穩定條件為K1> 0;K2>0;2K1+K2<4。由此可確定P和I的參數值。
2.4 數字鎖相程序
程序上安排單片機的兩個捕獲中斷程序及周期中斷程序,以完成檢測和計算任務。
- 1
- 2
- 總2頁
來源:互聯網
http:www.mangadaku.com/news/36672.htm

